If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29x^2-101x-40=0
a = 29; b = -101; c = -40;
Δ = b2-4ac
Δ = -1012-4·29·(-40)
Δ = 14841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14841}=\sqrt{9*1649}=\sqrt{9}*\sqrt{1649}=3\sqrt{1649}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-101)-3\sqrt{1649}}{2*29}=\frac{101-3\sqrt{1649}}{58} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-101)+3\sqrt{1649}}{2*29}=\frac{101+3\sqrt{1649}}{58} $
| Z^2-21z+38=0 | | 10/x+3=(x-9)/(x-4) | | 6(2x+4)=70 | | 5(3-y)=10 | | 7x-45=360 | | 12x^2-61x=0 | | 4x-6=-7x+49 | | 14=2k | | -4x+24=-8x+4 | | 4x+10=3/3x | | -8v+6=9v+6 | | 2+3(x+1)=2-4 | | 4x+5x+6x=450 | | 4x-3/10x-9=0.05/0.25 | | 2x+20=4/5 | | 20^8x-3-7=32 | | 26x^-41x+3=0 | | 1-8x=33 | | 8-5x=4x+26 | | -8+4x=-32+13 | | x^2+10x-950=0 | | f(2)=6,f(-1)=-3 | | 2z-2z+2z-z+2z=15 | | -14a+-a=-15 | | 5x+2/3x=180 | | 30/x=16/100 | | 2-x/5-0.5x=1-2x/4+0.25 | | 19y-10y-4y=20 | | 7x-4x-x=2 | | 5u-2u-3u+2u+u=18 | | x+(x*0.1831)=60000 | | 2z-2z+5z+5z=20 |